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Abstract - A data assimilation scheme has been applied 
using field data to determine the effects of the temporal 
frequency at which remote observations are assimilated to 
adjust model soil moisture profiles.  It was found that, in terms 
of near-surface soil moisture, there is generally a gradual 
decrease in performance as the update frequency decreases.  
Performance for update periods longer than 8 days is nearly 
identical to that of a simulation performed without assimilation. 
 

I. INTRODUCTION 

Soil moisture profiles estimated by land surface models 
are affected by errors in (1) meteorological inputs, 
particularly precipitation, (2) soils, vegetation, and topogra-
phy parameters, and (3) model physics.  Assimilating 
accurate observations into such models may reduce the 
impact of errors and improve soil moisture estimates.  In this 
paper, we discuss a system for assimilating remote 
microwave measurements into a land surface model using a 
Kalman filter.  Data from the Southern Great Plains 1997 
(SGP ‘97) Hydrology Experiment are used in a series of 
model simulations designed to examine how model 
performance changes as the time period between times of 
data assimilation is altered.  Model performance is evaluated 
based on surface layer soil moisture estimates. 

  
II. ASSIMILATION SYSTEM 

The assimilation system consists of three components: 
(1) a land surface model to estimate soil moisture and 
temperature profiles, (2) a microwave radiobrightness model 
to estimate brightness temperatures, and (3) a Kalman filter 
to assimilate remotely-sensed brightness temperatures.  The 
land surface model used is SHEELS, the Simulator for 
Hydrology and Energy Exchange at the Land Surface [1],[2].  
SHEELS simulates three soil ‘zones’, with each zone being 
divided into a variable number of ‘layers’.  SHEELS 
estimates volumetric water content for each soil zone and 
layer using Darcy flow to model sub-surface fluxes and a 

kinematic wave approach to simulate overland flow.  In this 
study, the upper, root and bottom soil zones extend to depths 
of 100, 1000 and 2000 mm, and are sub-divided further into 
five, five and three layers, respectively. 

Six basic meteorological variables plus precipitation are 
required as surface boundary conditions.  The basic 
meteorological inputs were applied uniformly in space, while 
precipitation was treated as spatially variable as described 
below.  Soil properties were derived from the CONUS 1 km 
soil characteristics data set, and vegetation properties were 
based on a landcover classification from Landsat-TM data 
[3].     

The radiobrightness model used in this study is a coher-
ent radiative transfer (CRT) model [4].  The model is based 
on the vertical profiles of temperature and emissivity, the 
latter of which is strongly controlled by the soil moisture 
content.  Required input variables to the CRT are surface 
temperature, vegetation water content, and profiles of soil 
moisture, temperature and porosity.   

An extended Kalman filter is used to update the model 
soil moisture profile by assimilating remote measurements 
[1].  In the Kalman filter, intermittent microwave brightness 
temperature observations and the model soil moisture state 
are blended to yield an optimal estimate of the soil moisture 
profile.  The amount of nudging toward the observations is 
based on the relative uncertainties of the model state and the 
observations and the difference between the two. 

 
III. DESCRIPTION OF NUMERICAL EXPERIMENT 

One of the most useful gridded rainfall data sources in 
the US is the NOAA Stage IV hourly 4-km product.  
However, these estimates are still prone to large errors.  
Because we had a very dense rain gauge network in our study 
domain, we were able to create gridded hourly rainfall 
estimates that we believe have much smaller errors than do 
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Fig. 1.  Schematic showing coupling of model system components in 

control and assimilation simulations 
 

Stage IV estimates.  Our experimental design is based on two 
series of simulations, based on ‘accurate’ (gauge) and 
‘inaccurate’ (Stage IV) rainfall inputs.  Simulations using 
gauge input are referred to as ‘control’ runs, while those 
based on Stage IV data are called ‘assimilation’ runs.  The 
control case was considered the ‘truth’, and the assimilation 
cases were compared to it.  As shown in fig. 1, soil moisture 
and temperature profiles output from the control run at each 
model time step were passed to the CRT, which estimated L-
band brightness temperatures.  The control run brightness 
temperatures, with Gaussian noise added, provided the data 
needed for the assimilation simulations.  Soil moisture 
estimates from each assimilation run were compared with 
values from the control case. 

We applied the assimilation system using data from the 
600 km2 Little Washita River Basin in central Oklahoma.  
Data from SGP ’97 were available for 18 June – 21 July 
(days of year 169-202).  Meteorological data except rainfall 
were averaged over 40 USDA Micronet sites and applied 
uniformly across the domain.  The control simulation was 
performed using these meteorological data and distributed 
rainfall estimates obtained from the rain gauge 
measurements. 

Several assimilation runs were performed in which 
brightness temperatures output by the control run were 
assimilated at the following intervals: 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 15, 30 days, and no assimilation.  In these runs, 
‘inaccurate’ (Stage IV) precipitation inputs were applied to 
represent typical errors that can be expected in rainfall 
estimates.  Daily differences between gauge and Stage IV 
rainfall estimates were both positive and negative, but the 
total basin-averaged Stage IV rainfall was 52 mm, 
significantly less than the 82 mm gauge rainfall estimate. 

 
IV. RESULTS 

To illustrate the temporal behavior of soil moisture 
estimated by the assimilation simulations, figs. 2a-b show 
upper zone soil moisture estimates from simulations in which 
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Fig. 2a. Hourly time series of upper zone fractional water content estimated 

by the control and 1- and 2-day assimilation simulations 
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Fig. 2b. Same as fig. 2a except for 5- and 10-day assimilation simulations 

 
L-band brightness temperatures were assimilated at 1-, 2-, 5- 
and 10-day intervals.  After the first rainfall on days 173-174, 
the assimilation runs underestimated soil moisture because 
the ‘incorrect’ Stage IV rainfall was only 6.0 mm while the 
‘correct’ gauge rainfall was 13.7 mm.  Data assimilation on 
day 175 reduced the differences for the 1- and 2-day update 
cases, but differences remained for the 5- and 10-day update 
cases until assimilation on day 179.  Similar behavior is seen 
following the rainfall on day 179, but in this case the Stage 
IV rainfall estimates were greater than the gauge values, so 
the assimilation runs overestimated soil moisture.  After the 
large rainfall on days 191-192, differences between the 
assimilation and control simulations persisted for several 
days.  Assimilation slightly reduced these errors. 

The benefit of data assimilation has been evaluated in 
terms of the root mean square error (RMSE) in upper zone 
fractional water content (fwu) between the control simulation 
and each assimilation simulation.  RMSE time series of fwu 
are shown for 1-, 2-, 3-, and 10-day update periods in figs. 
3a- 
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Fig. 3a.  Root mean square errors in upper zone fractional water content for 

the 1-day assimilation simulation with respect to the control simulation 
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Fig. 3b.  Same as fig. 3a except for 2-, 3-, and 10-day simulations 

 
b.  For update periods of 1, 2 and 3 days, RMSE values are 
generally lower than for the no-update case, particularly after 
rainfall events.  The exceptions are the dry periods of days 
182-184 and 187-190 for the 1- and 2-day update cases.  For 
an update period of 10 days (fig. 3b), there is little overall 
improvement over the no-update simulation. 

Time-averaged fwu RMSE values plotted in fig. 4 show 
a gradual increase in RMSE with update period, although 2-
day updates give slightly better results than 1-day updates.  
Performance for update periods longer than 8 days is very 
nearly identical to that of the no-update simulation. 

 
V. SUMMARY AND CONCLUSIONS 

A modeling – data assimilation scheme has been applied 
using SGP ’97 field experiment data to determine the effects 
of the temporal frequency at which microwave observations 
are assimilated into the system to adjust the soil moisture 
profile.  A control simulation was performed using rainfall 
data from a dense rain gauge network, which is taken as 
ground truth.  The control run served as a benchmark for a 
set of assimilation runs, which were based on Stage IV 

rainfall 
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Fig. 4.  Time-averaged RMS errors in upper zone fractional water content for 

all assimilation simulations with respect to the control simulation. 
 

data.  The radar estimates were found to differ greatly from 
the gauge data; these differences were considered errors in 
our study.  L-band brightness temperatures derived from the 
control runs via a microwave radiobrightness model were 
used in the assimilation runs to update the moisture profile.  
Random noise was first added to the brightness temperatures 
to more realistically simulate application of the scheme.  
Because of the nature of our numerical experiment, it is not 
possible to draw inferences regarding the absolute value of 
the ‘error’ statistics shown here.  Rather, the temporal 
behavior of errors and the changes in error statistics as the 
update period is increased is of relevance.  We have shown, 
in terms of near-surface soil moisture, that there is generally 
a gradual increase in RMSE with update period. 
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